Language Guided Meta-Control for Embodied Instruction Following

Divyam Goel¹ Kunal Pratap Singh² Jonghyun Choi³

भारतीय प्रौद्योगिकी संस्थान रूड़की Indian Institute of Technology Roorkee

Problem Setup

Given a human-human dialogue history and egocentric RGB frames, complete tasks by inferring a sequence of primitive actions to achieve a goal environment state.

Motivation

- Natural language instructions without additional supervision can result in unresolved ambiguities and a limited understanding of the final goal
- \rightarrow obtain clarification by learning from human-human dialogues
- Existing frameworks are prone to underutilization of signals arising from the natural language instructions
- \rightarrow develop robust mechanism to improve language grounding in agent's action space

LMC: Proposed Language Guided Meta-Controlle

New Objective: Auxiliary Reasoning Loss

Predict a sequence of action types to improve "conceptual grounding"

- → add a linear layer over the multimodal transformer to predict a sequence of action types
- → use a cross-entropy loss to train the auxiliary module

$$\hat{m}_t = f(x_{1:L}, v_{1:t}, \hat{a}_{1:t-1}) \mid \mathcal{L}_{aux} = \sum_{t=1}^{T} m_t \log(\hat{m}_t)$$

Self Monitoring Agent: Progress Monitoring Loss [1]

 \rightarrow Helps agent learn the utility of each state in the process of completing the overall task

$$p_t = f(x_{1:L}, v_{1:t}, \hat{a}_{1:t-1})$$
 $\mathcal{L}_{pm} = \sum_{t=1}^{T} (y_t - p_t)^2$

[1] Episodic Transformer for Vision-and-Language Navigation

Experimental Result

	Seen		Unseen	
Model	SR [TLW]	GC [TLW]	SR [TLW]	GC [TLW]
Random	0.82 [0.62]	0.75 [0.43]	1.34 [0.43]	0.41 [0.07]
Lang	0.99 [0.28]	1.04 [0.29]	2.36 [0.23]	0.78 [0.29]
Vision	5.1 [1.15]	6.96 [1.76]	3.89 [0.61]	3.56 [0.73]
E.T.	9.5 [2.8]	10.0 [7.5]	7.6 [2.2]	9.1 [7.3]
+LMC (Ours)	18.55 [5.6]	19.0 [12.1]	12.5 [3.8]	12.0 [11.5]
+Aux	10.9 [2.6]	11.6 [8.0]	10.7 [2.8]	11.0 [10.4]
+PM	8.2 [3.6]	9.5 [8.1]	. 10.5 [3.6]	10.4 [11.1]

Evaluation Metrics:

- Success Rate (SR): 1 if all expected state changes are completed by the agent, else 0.
- Goal-Condition Success (GC): Fraction of all expected state changes completed by the agent. Averaged over all trajectories
- Trajectory Weighted Metrics (TLW): Evaluation metrics weighted by the trajectory length of the agent during the instance.

Summar

- We explore the problem of embodied instruction following while learning from human-human dialogues.
- > We propose a language guided meta-controller that enables a more robust language grounding in the agents' action space.
- Our meta-controller leads to an absolute improvement of 9% in success rate over seen environments, and 5% over unseen environments in the validation set.